4 research outputs found

    A New Induction Motor Adaptive Robust Vector Control based on Backstepping

    Get PDF
    In this paper, a novel approach to nonlinear control of induction machine, recursive on-line estimation of rotor time constant and load torque are developed. The proposed strategy combines Integrated Backstepping and Indirect Field Oriented Controls. The proposed approach is used to design controllers for the rotor flux and speed, estimate the values of rotor time constant and load torque and track their changes on-line. An open loop estimator is used to estimate the rotor flux. Simulation results are presented which demonstrate the effectiveness of the control technique and on-line estimation

    Integral Backstepping Based Nonlinear Control for Maximum Power Point Tracking and Unity Power Factor of a Grid Connected Hybrid Wind-Photovoltaic System

    Get PDF
    This paper proposes a novel integral backstepping-based nonlinear control strategy for a grid-connected wind-photovoltaic hybrid system. Firstly, detailed three-phase models of the hybrid system elements are presented, and then an overall state-space model is derived. Secondly, nonlinear control laws for the hybrid system’s converters are developed with the aim of ensuring maximum extraction of the available renewable energy, stabilizing the DC bus voltage and guaranteeing the operation of the hybrid system at unity power factor. The overall stability of the closed-loop system is demonstrated on the basis of Lyapunov’s stability theory. Comprehensive simulations, using the MATLAB/Simulink software environment, are carried out to assess the effectiveness of the proposed control methodology. The simulation results obtained confirm that the proposed control strategy offers high efficiency in various operating modes of the hybrid generation system

    Backstepping based power control of a three-phase Single-stage Grid-connected PV system

    Get PDF
    In order to reduce costs while maintaining superior performance, this paper presents a new control methodology of a three-phase grid connected photovoltaic system without using the intermediary DC/DC converter. Based on the synchronized nonlinear model of the whole photovoltaic system, two controllers have been proposed for the three-phase inverter in order to ensure the operation of the PV system at the maximum power point with unity power factor and minimum grid disturbance. Grid synchronization has been ensured by a three-phase 2nd order PLL (Phase-Locked Loop). The stability of each controller is demonstrated by means of Lyapunov analysis and evaluated under changing atmospheric conditions using the Matlab/Simulink environment, the simulation results clearly demonstrate the performance provided by each controller

    Nonlinear control of an induction motor taking into account saturation and rotor resistance variation effects

    No full text
    Nowadays, electrical drives require more and more precision and reliability. Induction machine is one of the most robust actuators in terms of maintenance and reliability. Their control requires a good knowledge of the physical phenomena governing its operation. Saturation and heating are two main phenomena that must be taken into account to achieve the desired performance. In this paper, we will synthesize a nonlinear control law based on the “Backstepping” method, to regulate rotor speed and flux. This law takes into account saturation and rotor resistance variation effects. The immunity of the control to temperature rise will be tested. This control strategy is studied by simulation in the MATLAB/Simulink environment
    corecore